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Abstract
The cycle expansion of the thermodynamical zeta function for the Lyapunov
exponent of a product of random matrices typically converges exponentially
with the maximal cycle length (Mainieri 1992 Phys. Rev. Lett. 68 1965). In
this paper we show that the convergent exponents are given by the spectrum of a
properly defined evolution operator, which describes how a steady distribution
of vector direction is established under the action of random matrices. The
exponential decay terms are automatically eliminated in the cycle expansion of
the spectral determinant, which greatly accelerates the convergence provided
all matrix elements are positive numbers. As a marginal case, the random
Fibonacci series is studied in detail, and it is shown that this method is helpful.

PACS numbers: 02.50.−r, 05.45.−a

1. Introduction

Product of random matrices (PRM) arises naturally in the study of disorder systems such as
random Ising chain and wave localization in one-dimensional random potential. The Lyapunov
exponent of a PRM system, which characterizes the exponential divergence of the product
matrices, is defined as

γ ≡ lim
n→∞

1

n
〈log ||Mn · · · M2M1||〉, (1)

where Mi’s are random matrices, ‖·‖ is the matrix norm and 〈· · ·〉 denotes the ensemble
average. Although γ is defined as the averaged divergent rate, as a generalized law of large
number, it was proved that the product of most (with unity probability) sequences of random
matrices grow as enγ when n → ∞ [1]. The Lyapunov exponent is a statistical quantity of
great physical significance. For example, the mean free energy of a random Ising chain is
given by γ , while the localization length of wave in random medium is equal to γ −1 (for
details, see [2] and references therein). For a general PRM, precise determination of γ is,
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however, not easy. The numerical performances of conventional methods such as Monte Carlo
simulation and weak disorder expansion are seriously limited by slow convergence.

Inspired by the striking efficiency of periodic orbit theory in the study of statistical
properties of chaotic dynamical systems [3, 4], Mainieri in 1992 proposed a cycle expansion
of γ when quenched disorder is adopted. In this model, the random matrices are independently
sampled from a discrete set with assigned probabilities, say, Mi = A (or B) with probability
p (or q = 1 − p). Starting from the thermodynamical zeta function, a cycle expansion of γ

was derived [5],

γ = pγA + qγB + pq(γAB − γA − γB) + p2q(γAAB − γA − γAB)

+ pq2(γABB − γB − γAB) + · · · , (2)

where γM ≡ limn→∞ 1
n

log‖Mn‖ = log|µ0(M)| with µ0(M) being the leading eigenvalue
of M. The cycle expansion typically converges exponentially with the length of the longest
cycles, which makes this method numerically superior to conventional approaches.

The efficiency of the cycle expansion of γ is largely controlled by the convergent exponent.
However, the meaning of this exponent and how to determine it remain undiscussed. Moreover,
from the viewpoint of periodic orbit theory, one can expect an even faster convergence if the
spectral determinant instead of a thermodynamical zeta function is used. In fact, such method
has been established in deterministic systems ([6], see also [7, appendix H]). The main idea
is that we should consider the change in the direction of tangent vector, i.e. the induced
dynamics on the unit sphere in the tangent space. In this paper we generalize this method
to PRM, which is viewed as a stochastic dynamical system. As we can see, in the induced
dynamical system, the convergence of the cycle expansion can be regarded as a process of
relaxation, i.e. approaching an equilibrium state, and the convergent exponent can be related
to the spectrum of the corresponding evolution (Frobenius-Perron) operator.

For the sake of simplicity, we focus on matrices with positive elements. The significance
of this restriction will be clear in the discussion of the evolution operator. The paper is
organized as follows. In section 2, we briefly describe the thermodynamical zeta function
and show that the cycle expansion derived from it can be reduced to a more heuristic form,
i.e. the average over periodic sequences. In section 3, the spectral determinant approach is
established and its relation to the replica method is discussed. Numerical examples are given
in section 4; in particular, the random Fibonacci series as a prototype of a degenerated system
with intermittence is discussed in detail.

2. Thermodynamical zeta function

In this section we briefly discuss the thermodynamical zeta function formalism for the
calculation of the Lyapunov exponent [5]. A description of this well-established result is
necessary in order both to fix notation, and to provide a natural comparison with the evolution
operator approach to be discussed in the following section.

Assume the random matrix Mi has m possible choices, namely Mi = Aj with probability
pj , j = 1, 2, . . . , m. With apparent reason, we require pj > 0 and

∑m
j=1 pj = 1. For

convenience, the product of n matrices Asn
· · · As2As1 is denoted by AS , where S = sn · · · s2s1

is a string of integers. The probability of AS is given by

Prob(S) =
n∏

i=1

psi
. (3)
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In these notations, the Lyapunov exponent is explicitly defined as γ = limn→∞ γ (n) with

γ (n) ≡ 1

n

∑
|S|=n

Prob(S) log µ0(AS), (4)

where |S| denotes the string length. In (4) we have fixed ‖A‖ to µ0(A) for simplicity.
To calculate γ and understand the multi-scale growth of the matrix products, it is

convenient to start with the following auxiliary summation:∑
|S|=n

Prob(S)µ
β

0 (AS) (5)

which diverges as enλβ when n → ∞. λβ is called the generalized Lyapunov exponent, from
which γ is determined as

γ = ∂βλβ |β=0. (6)

When β is an integer, λβ can be related to the leading eigenvalue of a finite matrix. Based
on this fact, the replica method provides an estimation of γ via the extrapolation formula
γ ≈ 2λ1 − λ2/2 [2]. Generally, we have

λβ = −log zβ, (7)

where zβ is the smallest zero of the thermodynamical zeta function defined by1

ζ−1(z, β) = exp


−

∞∑
n=1

zn

n

∑
|S|=n

Prob(S)µ
β

0 (AS)


 . (8)

Obviously, ζ−1(z, 0) = 1− z and z0 = 1. Therefore the Lyapunov exponent can be calculated
from the thermodynamical zeta function according to

γ = −∂βzβ |β=0 = ∂βζ−1(z, β)

∂zζ−1(z, β)

∣∣∣∣
β=0,z=1

= −∂βζ−1(z, β)|β=0,z=1. (9)

Since µ0(AS) as well as Prob(S) are invariant under a cyclic permutation of S, i.e.
S = sn · · · s2s1 → S ′ = s1sn · · · s2, the summation in (8) can be performed in terms of cycles
and their repetitions, namely

ζ−1(z, β) = exp

{
−
∑
{p}

∞∑
r=1

1

r
[znp Prob(p) eβγp ]r

}

=
∏
{p}

[1 − znp Prob(p) eβγp ]. (10)

In product (10) ‘p’ runs over all primitive cycles, np denotes the cycle length and γp ≡
log µ0(Ap). Expanding ζ−1(z, β) in powers of z, i.e.

ζ−1(z, β) =
∏

i

(1 − zpi eβγi )
∏
i<j

(1 − z2pipj eβγij ) · · ·

= 1 − z
∑

i

pi eβγi − z2
∑
i<j

pipj (e
βγij − eβ(γi+γj )) + · · · . (11)

We obtain, according to (9), the cycle expansion of the Lyapunov exponent [5],

γ =
∑

i

piγi +
∑
i<j

pipj (γij − γi − γj ) + · · · . (12)

1 Throughout this paper, a zero is the smallest means that it is the zero with the smallest module.
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In the cycle expansion, the main contribution is given by the short (fundamental) cycles, while
the high-order corrections due to the longer cycles are naturally organized into nearly cancelled
groups.

It should be noted that although the cycle expansion (12) appears physically appealing, it
can be reduced to a more compact, and in a sense trivial, form. Combining (9) and (8), we
have

γ = lim
z→1

ζ−1(z, 0)

∞∑
n=1

zn

n

∑
|S|=n

Prob(S) log µ0(AS)

= lim
z→1

(1 − z)

∞∑
n=1

γ (n)zn = lim
z→1

[
γ (1)z +

∞∑
n=2

(γ (n) − γ (n−1))zn

]
. (13)

Hence if the cycle expansion (12) is truncated based on the cycle length, it will reproduce
definition (4). In fact, we can directly write γ (n) in terms of cycles, namely,

γ (n) =
∑
{p}

∞∑
r=1

δn,rnp Prob(p)rγp, (14)

e.g.

γ (1) =
∑

i

piγi (15)

γ (2) =
∑

i

p2
i γi +

∑
i<j

pipjγij (16)

and so on. Evidently (14) and the truncations of (12) are equivalent.

3. Evolution operator approach

By using the thermodynamical method, it was observed that γ (n) ∼ γ + cδn when n → ∞
[5]. Since the dynamical zeta function in the periodic orbit theory can be regarded as the first-
order approximation of spectral determinant [7], it is natural to adopt the spectral determinant
to improve the cycle expansion of the Lyapunov exponent because it allows faster than the
exponential convergence. For this purpose, one must first associate the Lyapunov exponent
to the spectrum of an evolution (or transfer) operator supported by a dynamical system. Such
system has been successfully constructed in the deterministic case [6]. The main idea is that
we should consider the change in the direction of tangent vector. By extending this idea to
PRM, in this section we discuss in detail the evolution operator approach for the calculation of
the Lyapunov exponent. We would like to point out that although the derivation is formal and
a little bit lengthy, the final result is rather simple: we need only to replace γ (n) by a weighted
averaging, namely

γ n =
∑n−1

j=0 ajγ
(n−j)∑n−1

j=0 aj

, (17)

where the coefficients are derived from L0, the evolution operator, according to

1

1 − z
det(1 − zL0) =

∞∑
k=0

akz
k, (18)

and numerical results show that equation (17) is actually a very effective accelerated algorithm
(see section 4).
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3.1. Map on the unit vectors

We first consider 2 × 2 matrices for simplicity. Let Xθ be the unit vector in the direction
labelled by θ . Write the action of a matrix A on Xθ as

AXθ = hA(θ)XfA(θ), (19)

namely fA describes the change in the vector direction and hA for the change in the vector
length. As aij > 0, we can consider only vectors with positive coordinates. To be concrete,
let us define θ = log(x2/x1) and r = (x1x2)

1/2, then Xθ = (e−θ/2, eθ/2)T ,

fA(θ) = log
a21 + a22 eθ

a11 + a12 eθ
(20)

and

hA(θ) = (a11a22 + a12a21 + a11a21 e−θ + a12a22 eθ )
1
2 =

∣∣∣∣ det A

∂θfA(θ)

∣∣∣∣
1
2

. (21)

The last equation indicates that the dilation in the r-direction can be extracted from the
contraction in θ -space. This fact enables us to get the Lyapunov exponent from the dynamics
of unit vectors. Moreover, we can see that fA is actually a uniformly contractive map. Note
that

|∂θfA(θ)| � |a11a22 − a12a21|
a11a22 + a12a21 + 2(a11a21a12a22)

1
2

≡ κ < 1, (22)

and therefore

|fA(θ1) − fA(θ2)| � κ|θ1 − θ2| (23)

for arbitrary θ1, θ2. The uniform contraction property is crucial to the evolution operator to be
discussed. With an elaborate definition of projective distance, this property can be established
for high-dimensional positive matrices (see, for example, [18]).

As a contractive map, fA has a unique fixed point θ∗. Xθ∗ is the eigenvector corresponding
to the leading eigenvalue of A, i.e. hA(θ∗) = µ0(A) and, according to equation (21),

∂θfA(θ∗) = det A

µ2
0(A)

= µ1(A)

µ0(A)
≡ g(A), (24)

where µ1(A) denotes the second eigenvalue of A.

3.2. Evolution operator

Let ρ(θ) be a distribution of the vector direction, its evolution under the action of random
matrices {Ai} is described by the operator L0, i.e.

(L0ρ)(θ) =
∫

L0(θ, θ ′)ρ(θ ′) dθ ′, (25)

where

L0(θ1, θ2) =
m∑

i=1

piδ[θ1 − fAi
(θ2)]. (26)

To get the Lyapunov exponent, it is necessary to introduce a generalized evolution operator

Lβ(θ1, θ2) =
m∑

i=1

pi

∣∣∣∣ det Ai

∂θfAi
(θ2)

∣∣∣∣
β

2

δ
[
θ1 − fAi

(θ2)
]
. (27)
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The generalized evolution operator is close related to summation (5). Let us calculate the
traces of Lβ and its powers. If t � 1 is an integer

Lt
β(θ1, θ2) =

∑
|S|=t

Prob(S)

∣∣∣∣ det AS

∂θfAS
(θ2)

∣∣∣∣
β

2

δ[θ1 − fAS
(θ2)], (28)

hence

tr
(
Lt

β

) =
∫ ∞

−∞
Lt

β(θ, θ) dθ =
∑
|S|=t

Prob(S)µ
β

0 (AS)

1 − g(AS)
. (29)

Note that, when t → ∞, the denominators will not affect the divergence behaviour of (29) if

sup
S

{|g(AS)|} < 1. (30)

In fact, from the uniform contraction property of fAi
we have a more strong fact, namely the

hyperbolic condition

|g(AS)| < η|S| (0 < η < 1). (31)

Therefore we conclude that tr
(
Lt

β

)
also diverges as etλβ when t → ∞, or, eλβ is the leading

eigenvalue of Lβ .
The eigenvalues of Lβ can be calculated from the zeros of the spectral determinant

det(1 − zLβ) = exp

{
−

∞∑
t=1

zt

t
tr
(
Lt

β

)} = exp

{
−
∑

S

z|S|

|S|
Prob(S)µ

β

0 (AS)

1 − g(AS)

}

= exp


−

∑
{p}

∞∑
r=1

1

r

[
znp Prob(p)µ

β

0 (Ap)
]r

1 − gr(Ap)




=
∞∏

k=0

ζ−1
k (z, β), (32)

where

ζ−1
k (z, β) = exp


−

∑
{p}

∞∑
r=1

1

r

[
znp Prob(p)µ

β

0 (Ap)g
k(Ap)

]r
=
∏
{p}

[
1 − znp Prob(p)µ

β

0 (AS)g
k(Ap)

]
. (33)

Obviously we can identify ζ−1
0 (z, β) with the thermodynamical zeta function. Although

det(1 − zLβ) and ζ−1
0 (z, β) have the same smallest zero, it is expected that the former is an

entire analytic function of z while the latter generally has poles2. The analytic property of
det(1 − zLβ) ensures the power series expansion

det(1 − zLβ) = 1 +
∞∑

k=1

bk(β)zk (34)

converges no matter how large |z| may be. Therefore, if the spectral determinant is truncated
as

Fn(z, β) = 1 +
n∑

k=1

bk(β)zk, (35)

2 Although our numerical results strongly suggest that det(1 − zLβ) is an entire function, a proof of this fact is
mathematically very hard. We note also that, under certain conditions, the entireness of the spectral determinant can
be rigorously proved (see, for example, [8]).
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the error will vanish faster than any power of e−n when n → ∞. Calculating γ at this
approximation, we get

γ ≈ ∂βFn(z, β)

∂zFn(z, β)

∣∣∣∣
β=0,z=1

= −qn +
∑n−1

j=0 ajγ
(n−j)

−nan +
∑n−1

j=0 aj

, (36)

where an and qn are determined by

H(z) = 1

1 − z
det(1 − zL0) = exp

{
−
∑
{p}

∞∑
r=1

1

r

[znp Prob(p)g(Ap)]r

1 − gr(Ap)

}

=
∏
k>0

ζ−1
k (z, 0) =

∞∑
k=0

akz
k (37)

and

Q(z) = ∂β

∏
k>0

ζ−1
k (z, β)

∣∣∣∣
β=0

=
∞∑

k=1

qkz
k. (38)

Since H(z) and Q(z) are also entire functions, both an and qn can be dropped out in (36) and
we obtain the final form (17).

Heuristically, the super-exponential convergence of γ n can be understood as follows.
Write

γ (n) = γ +
∑

α

cανn
α + Rn, (39)

where |να| < 1 and Rn is a super-exponentially small remainder. Thus

γ n = γ +

∑n−1
j=0 ajRn−j +

∑
α

[
H
(
ν−1

α

)− Hn

(
ν−1

α

)]
cανn

α

H(1) − Hn(1)
, (40)

where Hn(z) = ∑∞
j=n aj z

j . Accordingly, the super-exponential convergence of γ n implies
H
(
ν−1

α

) = 0, or να’s belong to the spectrum of L0. In other words, γ (n) → γ can be viewed as
a relaxation process described by the evolution operator and its exponentially decaying terms
are automatically eliminated in the weighted average (17).

3.3. High-dimensional matrices and replica tricks

We can readily generalize the evolution operator method to d × d matrices. The trace of the
generalized evolution operator or its power is given by

tr
(
Lt

β

) =
∑
|S|=t

Prob(S)µ
β

0 (AS)∏d−1
j=1[1 − gj (AS)]

, (41)

where gj (A) = µj(A)/µ0(A) with {µ0(A), µ1(A) · · · µd−1(A)} being the spectrum of A.
The spectral determinant reads

det(1 − zLβ) = exp


−

∑
{p}

∞∑
r=1

1

r

[
znp Prob(p)µ

β

0 (Ap)
]r∏d−1

j=1

[
1 − gr

j (Ap)
]



=
∏

k

ζ−1
k (z, β), (42)

where k = (k1, k2, . . . , kd−1), kj � 0, and

ζ−1
k (z, β) =

∏
{p}

[
1 − znp Prob(p)µ

β

0 (Ap)

d−1
j=1g

kj

j (Ap)
]
. (43)
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Then we consider the generalized Lyapunov exponent at integer indices. It is clear that
λn can be extracted from a dn × dn matrix based on the following observation [2]:

[tr(AS)]n = tr(
⊗n

AS) = tr
(⊗n

Asn
· · ·⊗n

As2

⊗n
As1

)
, (44)

where
⊗n

A denotes n times tensor product of A. So

∑
|S|=t

Prob(S)[tr(AS)]n = tr

{[
m∑

i=1
pi

⊗n
Ai

]t}
≡ tr

(
Dt

n

)
. (45)

Note that tr(AS) is dominated by µ0(AS) and, similar to (5), summation (45) diverges also as
etλn when t → ∞. Consequently, we find that eλn is given by the leading eigenvalue of Dn. It
is then natural to ask how det(1 − zDn) can be related to det(1 − zLn). The answer is∏

|k|�n

ζ−1
k (z, n) = det(1 − zMn), (46)

where |k| = ∑d−1
j=1 kj and Mn is the restriction of Dn within the invariant subspace consists

of symmetric tensors. In other words, det(1 − zLn) and det(1 − zDn) have a common factor
det(1 − zMn), by which the shared leading eigenvalue of Ln and Dn can be determined. The
dimensionality of Mn is (n + d − 1)!/n!(d − 1)!, which is much smaller than that of Dn when
n is large. The proof of (46) is straightforward. Note that, within the symmetric invariant
subspace, the trace of a tensor product

⊗n
A is given by

tr(
⊗n

A)|0 = ∑
|k′|=n


d−1
j=0µ

kj

j (A), (47)

where k′ = (k0, k1, . . . , kd−1) and kj are non-negative integers. Therefore we have

∏
|k|�n

ζ−1
k (z, n) = exp


−

∑
S

z|S|

|S| Prob(S)µn
0(AS)

∑
|k|�n


d−1
j=1g

kj

j (AS)




= exp


−

∑
S

z|S|

|S| Prob(S)
∑
|k|�n

µ
n−|k|
0 (AS)


d−1
j=1µ

kj

j (AS)




= exp


−

∞∑
t=1

zt

t

∑
|S|=t

Prob(S)
∑

|k′|=n


d−1
j=0µ

kj

j (AS)




= exp

{
−

∞∑
t=1

zt

t
tr(Dt )

∣∣∣∣
0

}
= exp

{
−

∞∑
t=1

zt

t
tr
(
Mt

n

)}

= det(1 − zMn). (48)

4. Numerical examples

Our first example has its origin in the study of the Ising chain with a random magnetic field
[2, 5], i.e.

A1 =
[

1 e−2h−2J

e−2J e−2h

]
A2 =

[
1 e2h−2J

e−2J e2h

]
(49)

and p1 = p2 = 1/2.



On the cycle expansion for the Lyapunov exponent of a product of random matrices 8323

Before discussing the numerical result, it is advisable to take this example to give a brief
description of the computational aspects of the cycle expansion method (for more details,
please consult [7]). Note first that, for a 2 × 2 matrix A,

µ0(A) = 1
2 [tr(A) +

√
tr2(A) − 4 det(A)] and g(A) = tr(A)

µ0(A)
− 1.

Then, from equation (14), γ (n) can be calculated, e.g.

γ (1) = 1
2 [log µ0(A1) + log µ0(A1)] ≡ 1

2 (γ1 + γ2)

γ (2) = 1
4 [log µ0(A1) + log µ0(A1) + log µ0(A1A2)] ≡ 1

4 (γ1 + γ2 + γ12)

γ (3) = 1
8 (γ1 + γ2 + γ112 + γ122)

γ (4) = 1
16 (γ1 + γ2 + γ12 + γ1112 + γ1222 + γ1122)

and so on. To get the averaging weights {ak}, it is convenient to introduce an auxiliary series
{cn} according to

H(z) =
∞∑

k=0

akz
k = exp

(
−

∞∑
n=1

cn

n
zn

)
,

from which ak can be recursively extracted. Namely, a0 = 1 and

ak = −1

k

k∑
j=1

cjak−j

for k > 0. cn is determined by equation (37),

cn = trLn
0 − 1 =

∑
{p}

∞∑
r=1

δn,rnpnp

[Prob(p)g(Ap)]r

1 − gr(Ap)

e.g.

c1 = 1

2

[
g(A1)

1 − g(A1)
+

g(A2)

1 − g(A2)

]

c2 = 1

4

[
g2(A1)

1 − g2(A1)
+

g2(A2)

1 − g2(A2)
+

2g(A12)

1 − g(A12)

]

c3 = 1

8

[
g3(A1)

1 − g3(A1)
+

g3(A2)

1 − g3(A2)
+

3g(A112)

1 − g(A112)
+

3g(A122)

1 − g(A122)

]

c4 = 1

16

[
g4(A1)

1 − g4(A1)
+

g4(A2)

1 − g4(A2)
+

2g2(A12)

1 − g2(A12)
+

4g(A1112)

1 − g(A1112)
+

4g(A1222)

1 − g(A1222)

+
4g(A1122)

1 − g(A1122)

]
and so on. (Note that A12 ≡ A1A2, A112 ≡ A1A1A2, etc.) Finally, we obtain γ n according to
equation (17).

The numerical result at J = 0.3 and h = 1.4 is shown in figure 1. Evidently γ n converges
much faster than γ (n). For example, γ 11 produces more than 40 reliable digits

γ = 1.177 274 472 212 277 140 131 895 216 552 086 922 6976 · · · ,
while γ (11) gives only 12 correct digits. Moreover, we can see that the convergence of γ (n) is
dominated by the leading zero of H(z) as expected.
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Figure 1. The plot of |γ (n) − γ | and |γ n − γ | versus n for system (49). The solid line shows the
exponential decay of νn

1 , where 1/ν1 ≈ 13.724 542 604 9653 is the smallest zero of H(z).

Figure 2. As figure 1, for system (50). γ ≈ 0.433 724 901 564 827 884 296 173 01 and
1/ν1 ≈ 2.582 086 291 210 538.

Then we consider

A1 =
[

1 1
ε 1

]
A2 =

[
1 ε

1 1

]
(50)

and p1 = p2 = 1/2. The degenerated case at ε = 0 appears in the study of the
Farey fraction spin chain [9]. We calculate a nearly degenerated system at ε = 0.1 (see
figure 2). The qualitative convergent behaviour of γ n and γ (n) remain the same as that in the
first example. Note that, due to the nearby degeneracy, the precision of γ n is even poorer than
γ (n) when n is small.

Finally we consider the random Fibonacci sequence defined via the recurrence xn+1 =
xn ± xn−1, where the signs are chosen independently with equal probabilities. Several works
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have been done to this system (see, for example, [10–13]). Based on a fractal measure on the
Stern–Brocot division of the real line, Viswanath showed that

eγf = lim
n→∞ |xn|1/n ≈ 1.131 988 24 · · ·

with unity probability [10]. Obviously γf is the Lyapunov exponent of the PRM defined by

A1 =
[

1 1
1 0

]
A2 =

[
1 −1
1 0

]
(51)

and p1 = p2 = 1/2. The presence of the negative matrix element makes this system
not a suitable starting point to calculate γf . In order to proceed, we can make use of the
transformation that maps the system to the product of two non-negative matrices

A1 = A ≡
[

1 1
1 0

]
A2 = B ≡

[
0 1
1 1

]
(52)

with p1 = τ and p2 = τ 2, where τ = (
√

5 − 1)/2 is the golden ratio. γf can be calculated
from the new Lyapunov exponent γ according to γf = τ

2 γ [10]. We cannot straightforwardly
apply the evolution operator method to the non-negative system (52) since A12 = A1A2 is
degenerated, i.e. g(A12) = 1. Just as what happened in intermittent dynamical systems,
the thermodynamical zeta function ζ−1

0 (z, β) has a branch point [14, 15]. However, since
the statistical weight appears as an effective stable exponent, the branch point is located at
zc = −τ−3/2 rather than 1 for the dynamical zeta function in the deterministic system. The
branch point imposes a lower bound nα|zc|−n to the convergence of the cycle expansion.

Two strategies have been proposed to cope with the singularity caused by intermittence.
The first is to truncate the cycle expansion of the dynamical zeta function based on cycle
stability rather than cycle length [16]. The second is to generalize the cycle expansion of
ζ−1

0 (z, β) around the branch point based on its analytical structure [17]. In our case, without
essential modification of the cycle expansion method, reasonable precision can be achieved
by making use of two simple techniques. The first is renewal of matrices. Specifically, we
redefine a model of PRM with m = 2l + 1 fundamental matrices

A1 = (BA)l, A2j = B(BA)j−1 and A2j+1 = A2(BA)j−1 (53)

j = 1, 2, . . . , l. The corresponding probabilities are inherited from the original system, i.e.
p1 = τ 3l and p2j = p2j+1 = τ 3j−1. We can get γf from the new Lyapunov exponent γ

according to

γf

γ
= τ

2


2lτ 3l +

l∑
j=1

(4j − 1)τ 3j−1




−1

. (54)

In this way the branch point is moved to zc = τ−3l hence γ (n) will converge much faster than
that in the original system (see figure 3). The second is to truncate the spectral determinant as
the product of the finite number of zeta functions, i.e., to approximate det(1 − zL0) by

Fk(z) =
k∏

j=0

ζ−1
j (z, 0) = (1 − z)

∞∑
j=0

ak,j z
j (55)

and calculate γ by the weighted averaging

γ ≈ γ k,n =
∑n−1

j=0 ak,j γ
(n−j)∑n−1

j=0 ak,j

. (56)
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Figure 3. Convergence of the cycle expansion of the thermodynamical zeta function with different
choices of fundamental matrices (see equations (53) and (54)). |γ (n)

f − γf | is plotted versus the
maximal cycle length n. m = 2 corresponds to the original system given by equation (52).

Figure 4. Convergence accelerated by more zeta functions. The errors of γ
(n)
f and their weighted

averages (see equations (55) and (56)) are plotted at l = 1.

We expect that this treatment can eliminate the possible pole(s) of ζ−1
0 (z, 0) located within

the circle |z| = zc. When l is sufficiently large, e.g. l � 3, we find the numerical evidence
of such poles, namely, γ (n) converges slower than τ 3ln. Actually, the numerical calculation
indicates that this treatment is helpful even when ζ−1

0 (z, 0) has no such pole: γ k,n behaves
as an asymptotic series, i.e. when n is fixed there is an optimal cutoff of k, which increases
with n (see figure 4). Based on the numerical results listed in tables 1 and 2, we conclude that
γf ≈ 0.123 975 598 803 35.

5. Summary and discussion

In this paper we have studied the evolution operator method to improve the cycle expansion
of the Lyapunov exponent of PRM with quenched disorder. The main result is that the
convergence of the cycle expansion is closely related to the mixing of vector under the action
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Table 1. Lyapunov exponent of the random Fibonacci sequence calculated with five fundamental
matrices. n denotes the maximal cycle length and k denotes the number of additional zeta functions
(see equations (55) and (56)).

n k = 0 k = 1 k = 2 k = 3

1 0.1236 0.1236 0.1236 0.1236
2 0.1238 0.1237 0.1238 0.1238
3 0.123 98 0.123 977 0.1240 0.1240
4 0.123 974 0.123 9750 0.123 974 0.123 973
5 0.123 9756 0.123 975 57 0.123 975 64 0.123 9756
6 0.123 975 596 0.123 975 596 0.123 975 5981 0.123 975 5980
7 0.123 975 598 89 0.123 975 5986 0.123 975 598 81 0.123 975 598 79
8 0.123 975 598 79 0.123 975 598 79 0.123 975 598 8031 0.123 975 598 8032
9 0.123 975 598 803 0.123 975 598 802 0.123 975 598 803 35 0.123 975 598 803 35

10 0.123 975 598 8033 0.123 975 598 803 0.123 975 598 803 35 0.123 975 598 803 35

Table 2. As table 1, with seven fundamental matrices.

n k = 0 k = 1 k = 2 k = 3

1 0.129 0.129 0.129 0.129
2 0.1237 0.124 0.1237 0.1238
3 0.123 99 0.123 99 0.123 98 0.123 979
4 0.123 974 0.123 977 0.123 9753 0.123 9754
5 0.123 9756 0.123 9757 0.123 9756 0.123 9756
6 0.123 975 594 0.123 9756 0.123 975 5987 0.123 975 5987
7 0.123 975 599 0.123 975 599 0.123 975 598 804 0.123 975 598 803 36
8 0.123 975 5987 0.123 975 598 84 0.123 975 598 803 33 0.123 975 598 803 35

of random matrices. Based on this fact, an accelerated algorithm for the cycle expansion is
proposed, which greatly enhances the numerical efficiency since all exponentially converging
terms are naturally eliminated. This method can be readily generalized to the case where
the random matrices are generated from a Markovian model. To guarantee the hyperbolic
condition, we restrict ourselves to positive matrices, or, in representation-independent words,
we require that there is a sector in the vector space that strictly shrinks to its interior when
transformed by the random matrices. This restriction means that when being tried to apply to
some applications of PRM, e.g. the wave localization in random media, our method should be
improved further.
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[6] Cvitanović P and Vattay G 1993 Phys. Rev. Lett. 71 4138

http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1103/PhysRevLett.68.1965
http://dx.doi.org/10.1103/PhysRevLett.71.4138


8328 Z-Q Bai

[7] Cvitanović P, Artuso R, Mainieri R, Tanner G and Vattay G 2005 Chaos: Classical and Quantum (Copenhagen:
Niels Bohr Institute) ChaosBook.org

[8] Rugh H H 1992 Nonlinearity 5 1237
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